India Steps Forward in Science Education

Harry KellerBy Harry Keller
Editor, Science Education

A recent press release in The Hindu newspaper, titled “Virtual lab for exploring science in top 10 institutes,” explained a new initiative by the government of India.

The release states, “Students pursuing higher studies at the country’s top technical institutes will now be able to do any experiment without going to a laboratory but through virtual labs.” It goes on to note that the government will be spending $40 million (Rs 2 billion) to complete this project within a year.

Coming on the heels of new virtual science lab commercial products from Romania, Turkey, and Scotland, this announcement should have our attention for two reasons.

It shows that India has made a huge commitment to gaining ground in science and engineering. They have decided to increase their ability to graduate qualified students in these fields from their premier education organization, the India Institutes of Technology.

The announcement also highlights our own problems. Rather than engaging in our own initiatives, we are spending our education tax dollars to import simulation software from foreign countries. We’re sending our stimulus dollars to the Middle East! As I have noted previously, the end of this process could be outsourcing not just of software services, but of entire courses including the teachers to foreign countries.

keller_21apr2009aFor a relatively paltry fraction of the money that India is spending, we could be promoting great science education technology initiatives right here at home. A few million dollars to make us more competitive in science education seems like nothing compared with trillions in spending and even with $40 million being spent on a single project by India.

I contacted our Department of Education about this topic and received a polite letter informing me that the Department does not do this sort of thing. I should contact the states, all 50 of them, one at a time! I have contacted many of the states too. They say that I should contact the individual districts, most of which say to contact the schools. Talk about buck passing!

I have a vested interest in all of this. My modest company produces a solution for online science labs that uses prerecorded real experiments. I do my best to avoid bias and like to think that my involvement just allows me to focus better on what’s going on. I see little support for innovation and entrepreneurship in education. As a scientist, I have great concern about this entire issue, which is why I entered the virtual lab business in the first place.

This journal is the perfect place to discuss these matters. It’s all about technology and change, after all.  While these two can be discussed separately, I prefer to discuss the use of technology to effect change in education. In fact, I see technology as our only hope for bringing about real and useful change, at least in science education.

The well-known challenges in science education today include:

  • increasing class sizes, sometimes over forty students
  • decreasing budgets made even worse by the recession
  • loss of lab time to high-stakes testing
  • complete removal of some labs due to new safety regulations
  • increasing costs for hazardous waste disposal
  • greater insurance costs for science labs where overcrowding causes more accidents
  • reluctance of overworked and underpaid teachers to change their methods
  • high teacher turnover due to the stresses of some current school environments
  • lack of new teachers trained in science, especially physical sciences

Great efforts have been made over the last quarter century to improve science education. The National Science Education Standards (NSES) were published to great fanfare, and have not fixed the problems. New professional development efforts also leave the science classrooms unimproved. Billions of dollars have been spent.

The Obama administration has proposed new curriculum standards, new science labs, and more professional development. These solutions require an abundance of two things we have little of: time and money. The sort of technology that involves physical materials, for example, smart boards, also requires lots of money and professional development to utilize them well.

Internet technology, on the other hand, requires only Internet access, which now is available nearly everywhere, and Internet-literate teachers. This evolving technology, if applied well, can overcome all of the above list of challenges except for the reluctance of many teachers to change methods to employ the new ideas. Given the potential benefits, we should certainly be investigating this approach in as many way as possible.

Why should our government talk about bold steps and yet be so timid compared with India?

Innovation in Education: What? How?

Harry KellerBy Harry Keller
Editor, Science Education

What is innovation in education? How can you make it happen?

Within my focus of science education, I see little in the way of really innovative ideas being implemented in classrooms. Part of the reason has been discussed by John Adsit (“Needed – A Professional Approach to Teaching“). More on that later.

I’ll begin with where education innovations originate.

“That which has come to be, that is what will come to be; and that which has been done, that is what will be done; and so there is nothing new under the sun” (Ecclesiastes 1:9).

And so it is with ideas. There are really no new ideas, just remixing and repackaging of old ideas. As I researched the ideas underlying the use of student science laboratory experiences in teaching science, I found a single theme repeated again and again: inquire, explore, and discover.

In many of these cases, the author did not acknowledge those who had gone before, suggesting a rediscovery rather than building on previous knowledge. What a waste! You’ll detect echoes of Adsit’s article here. If educators would just study what has gone before, they could save time and improve education.

Therein lies at least one fertile area for innovation. Seek out previous ideas that worked well in the classroom but failed to spread for some reason. Understand that reason. Find a way to overcome the problem and repackage the good idea so that it will work this time.

hallAs for inquiry learning in science, Prof. Edwin H. Hall of Harvard University was using it in 1891. He wrote a book, A Text-Book of Physics: Largely Experimental, that included his philosophy in its introduction. Reading that introduction was a real eye opener for me. Those old guys were really quite smart. I should note that Prof. Hall was famous for discovering the Hall effect.

Hall had great success initially with his idea, but it foundered. Why? The reasons are not hard to find. Hall himself states that the laboratory class sizes must be no greater than twelve students. Try to imagine that in today’s typical public schools. New York City limits class size to 34 students, nearly triple the Hall limit.

Another reason can be found in the writings of Frederic W. Westaway, a very well-known writer on science philosophy and education from the 1890s through the 1920s. He also supported the inquiry approach to learning science and wrote eloquently about the qualifications of a science instructor in the inquiry mode. Such a person must be conversant with all science subjects, not just the one being taught. The instructor must also be well-acquainted with the history of science and understand the philosophy of science.

No amount of teacher recruiting, professional development, increase in teacher salaries (a good thing for other reasons), curriculum reform, or other traditional methods of improving instruction will fix these problems – at least not in a reasonable amount of time and with a reasonable amount of money. So, for over 100 years, this concept has languished. Periodically, it’s been resurrected and promoted by this person or that. Teacher workshops result in enthusiastic responses. Yet, it dies again and again. The pressures of required curriculum, tight budgets, limited and diminishing instruction time, remedial work with unprepared students, and so on prevent using this technique. Also, the teachers are not prepared for the demands of this teaching style. They haven’t the background that Westaway suggests they must have.

The rapidly and exponentially increasing computational and communication capabilities provided by today’s technology provide the best means to get out of this situation. Software can build in process and support so that teachers don’t have to be experts. Software can track student progress and success and suggest where extra effort should be expended. Administration can see whether teachers are using the tools well. I’ve implemented these ideas for online/offline science labs and found that they work very well. The best part, in some ways, is being able to make adjustments in the software rapidly. The software evolves much more rapidly than traditional textbooks or curricula. It just keeps getting better.

I can recommend this approach to innovation to anyone:

  • Research your particular area of interest.
  • Find educational approaches that have worked very well but failed to spread out into the general population.
  • Find out why.
  • Think about how technology can overcome the obstacles.

If you find a way, you could be the author of the next great education innovation.

kellerdec1808Lest you jump too quickly into innovating, allow me to add a small caution. You’ll have to get the educators who will use your innovation on board. Here’s where Adsit’s comments really come into play. Working for a school is completely unlike working for a company. The company will tell you what tools to use. You’ll be reviewed once or twice a year. Your salary and continued employment depend on the outcome of the review. Even if your job has little that can be measured objectively, you’ll still be measured.

If you invent a truly astounding education innovation that can transform students everywhere into great learners, you’ll face very high hurdles. You won’t be able simply to sell a school district on your invention. They have to get the buy-in of the teachers, who may say nice things about your idea and then go back to the classroom and continue on as though you didn’t exist. The teachers cannot be forced to use new ideas. Unless you’re relieving some real pain that these teachers feel, you won’t succeed without Herculean efforts. And failing students are not pain.

Adsit comments that a school leader was sticking to the “tried and true” methods. He was right to put that phrase in quotes. The real tried and true methods are those that have been tried and found to be true in that they work well. The methods the leader was implementing were “tried and false” instead. It’s insanity to expect doing more of the same in a failing situation will change the result.

For all of us who would like to see education progress to greater success, we have to identify the problems. That’s easy. We have to determine how to fix the problems. That’s proven to be very hard indeed. Someone once told me that education is the institution that is the third most resistant to change. “What are the first two?” I asked. Monasteries and nunneries was the answer.